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Abstract We study the density of complex zeros of a system of real random SO(m + 1)
polynomials in m variables. We show that the density of complex zeros of this random
polynomial system with real coefficients rapidly approaches the density of complex zeros in
the complex coefficients case. We also show that the behavior the scaled density of complex
zeros near R

m of the system of real random polynomials is different in the m ≥ 2 case than
in the m = 1 case: the density approaches infinity instead of tending linearly to zero.

Keywords Random polynomials · Probability · Several complex variables · Random zeros

1 Introduction

The density of real (resp. complex) zeros of random polynomials in one and several vari-
ables with real (resp. complex) Gaussian coefficients has been studied by many. Kac [9]
and Rice [12] independently found the density of zeros of a random polynomial with real
standard Gaussian coefficients. Bogomolny, Bohigas, and Leboeuf [3, 4] and Hannay [7]
have results on the density of (and correlations between) zeros of random polynomials with
complex Gaussian coefficients. Edelman and Kostlan [6] generalize the results for density of
real (resp. complex) zeros to systems of independent random functions in several variables
when the coefficients are real (resp. complex) Gaussian random variables. These results were
often motivated by problems in electrical engineering and physics. For example, Rice’s mo-
tivation for studying zeros random polynomials was zero crossings of noisy signals, while
Bogomolny, Bohigas, and Leboeuf were interested in problems that arise in quantum chaotic
dynamics.
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In one variable, Shepp and Vanderbei [13], Ibragimov and Zeitouni [8], and Prosen [11]
have studied complex zeros of real polynomials. Shepp and Vanderbei extended Kac’s for-
mula for the density of zeros of polynomials in one real variable, in the case where the
coefficients are standard real Gaussian coefficients, to include both real and non-real zeros
of those same polynomials. Ibragimov and Zeitouni studied the density of zeros of random
polynomials with i.i.d coefficients (which are not necessarily Gaussian). Prosen followed
Hannay’s approach and found both an unscaled and a scaled density formula for the com-
plex zeros of a random polynomial with independent real Gaussian coefficients. Prosen’s
motivation also came from quantum chaos, and he applied his results to chaotic systems
with time reversal symmetry. This symmetry is what motivated Prosen to study polynomials
with real random coefficients as opposed to the polynomials with complex random coeffi-
cients like those in [3, 4], and [7]. One consequence of Prosen’s unscaled density formula is
that, away from the real line, the density of complex zeros of an SO(2) random polynomial
which is the polynomial given by

fN(z) =
N∑

j=0

aj

(
N

j

) 1
2

zj ,

where aj is a real standard Gaussian random variable, rapidly approaches the density of
complex zeros of a random SU(2) polynomial which is the polynomial given by

fN(z) =
N∑

j=0

cj

(
N

j

) 1
2

zj

where cj is a complex standard Gaussian random variable, as N , the degree of the polyno-
mial, goes to infinity. Figure 1 illustrates this fact.

Fig. 1 (Color online) The
density of complex zeros of a
random SO(2) polynomial for
increasing values of N . Because
of symmetries, it is sufficient to
plot the density along the
imaginary axis for 0 < y ≤ 1.

Here we have normalized so that
the density of zeros of a random
SU(2) polynomial is the constant
function 1
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Fig. 2 (Color online) The
density of complex zeros of the
SO(m + 1) polynomial for
increasing values of N , in the
m = 2 case. Because of the
invariance properties of the
SO(m + 1) polynomial, it is
sufficient to plot the density for
z = (iy,0) ∈ C

m with 0 < y ≤ 1;
that is, along the imaginary axis
of the z1 component. We have
normalized so that the density of
zeros of the random SU(m + 1)
polynomial is the constant
function 1

Using the Poincaré-Lelong formula, we show this convergence, recovering Prosen’s sin-
gle variable result [11], and we show the convergence to be exponential. In Theorem 1 we
generalize this result to the density of zeros of a random SO(m + 1) polynomial system in
m variables (defined below). This generalized result is illustrated in Fig. 2 for the special
case m = 2. In [10], the author uses a different method to generalize this result further to the
density of critical points of a random SO(m+1) polynomial in m variables. In one variable,
Prosen also showed that, for every N , the density of zeros tends linearly towards zero as we
approach the real line. This result can be seen in Fig. 1. In several variables, the behavior
near y = 0 (i.e., near R

m) is much different. See Fig. 2. The same can be said for the scaled
density. In Theorem 2, we show that near R

m, the behavior of the scaled density of complex
zeros of the system in Theorem 1 is different in the m ≥ 2 case than the behavior of the
scaled density in the m = 1 case that was shown by Prosen: for m ≥ 2, the density goes to
infinity instead of tending linearly to zero. Figures 3 and 4 illustrate the scaled density for
the SO(m + 1) polynomial for m = 1 and m = 2. We now state these results more precisely.

1.1 Density of Zeros

Consider hm,N = (f1,N , . . . , fm,N ) : C
m → C

m, where fq,N is an SO(m + 1) polynomial of
the form

fq,N (z) =
N∑

|J |=0

c
q

J

(
N

J

)1/2

zJ ,

where the c
q

J ’s are independent complex random variables, where the random vector {cq

J } ∈
C

DN ,DN = (
N+m

m

)
has associated measure dγ , and where we are using standard multi-

index notation. We show that for these m independent functions in m variables, the density
of complex zeros in the real coefficients case rapidly approaches the density in the com-
plex coefficients case as the degree of the polynomials gets large. In fact, we show that the
convergence is exponential. Figure 2 illustrates this convergence for the case m = 2.

Note that we have normalized these density functions so that the density in the complex
coefficients case is the constant function 1, and that, because of invariance properties of
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Fig. 3 (Color online) The scaled
density of zeros for m = 1

Fig. 4 (Color online) The scaled
density of zeros for m = 2

the SO(m + 1) polynomial, it is enough to show the graph of the density function for z =
(iy,0) ∈ C

m,0 < y ≤ 1; that is, along the imaginary axis of the z1 component.
More formally, let

dγcx = 1

πN
e−|c|2dc

dγreal = δ
R

DN

1

(2π)N/2
e−|c|2/2dc,

where c ∈ C
DN , and δ

R
DN is the delta measure on R

DN ⊂ C
DN . Here dγcx corresponds

to the standard complex Gaussian coefficients case, where we are considering the random
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SU(m + 1) polynomial

fq,N (z) =
N∑

|J |=0

c
q

J

(
N

J

)1/2

zJ ,

where the c
q

J ’s are standard complex Gaussian random variables, and dγreal corresponds to
the standard real Gaussian coefficients case, where we have the random SO(m + 1) polyno-
mial

fq,N (z) =
N∑

|J |=0

c
q

J

(
N

J

)1/2

zJ =
N∑

|J |=0

a
q

J

(
N

J

)1/2

zJ ,

where c
q

J = a
q

J + i0 is a standard real Gaussian random variable. Let Eγ (·) denote the ex-
pectation with respect to γ ; or, in other words, integration over C

DN with respect to dγ. Let
Zhm,N (z)dω = ∑

hm,N (z)=0 δz denote the distribution corresponding to the zeros of hm,N(z).
Then Eγ (Zhm,N (z)) denotes the density of the zeros of h with respect to the measure dγ. We
now formally state the first result:

Theorem 1

Eγreal(Zhm,N (z)) = Eγcx (Zhm,N (z)) + O(e−λzN),

for all z ∈ C
m\R

m, where λz is a positive constant that depends continuously on z. The
explicit formula for λz is

λz = −log

∣∣∣∣
1 + z · z
1 + ‖z‖2

∣∣∣∣.

Also, for compact sets K ⊂ C
m\R

m, the density converges uniformly with an error term of
O(e−λKN), where λK is a constant that depends only on K .

Note that for z ∈ C
m\R

m, the argument of the log is less than 1, and λz is positive. Also
note that we are using the notation z · z = z2

1 + · · · + z2
m,‖z‖2 = |z1|2 + · · · + |zm|2.

The formula for Eγcx (ZhN (z)) is a special case of a result in [6], and is a very simple
function:

Eγcx (ZhN (z)) = mNm

πm

1

(1 + ‖z‖2)m+1
.

The formula for Eγreal(ZhN (z)) is very complicated, but, by Theorem 1, we know that
Eγreal(ZhN (z)) equals a very simple function, Eγcx (ZhN (z)), plus some exponentially small
term.

We prove this result using the Poincaré-Lelong formula, which is similar to that which
was used in [1], but has the added complication that the coefficients are real. The proof uses
2-point Szegő kernel asymptotics, which still applies to the polynomials with real coeffi-
cients because we are viewing them as functions of complex variables. We also use the fact
that the fq,N (z)’s are independent, which is a major difference from the critical points case
considered in [10].

Shiffman and Zelditch [14] and Bleher, Shiffman, and Zelditch [1, 2] have generalized
many results about random polynomials on C

m and R
m to complex manifolds, and they

have several results related to the statistics of zeros of a random holomorphic section of a
power of a line bundle over a complex manifold. In particular, in [1], the authors use the
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Poincaré-Lelong formula to find a formula for the density of zeros and correlations between
zeros. Edelman and Kostlan used a similar approach in [6] to get a result like Eγcx (ZhN (z))

but for systems of more general complex functions.
Motivated by applications in string theory, Douglas, Shiffman, and Zelditch [5] study the

critical points of a holomorphic section of a line bundle over a complex manifold. They use
a generalized Kac-Rice formula to find statistics of these critical points, namely the density
of critical points and correlations between critical points. In an upcoming paper, the author
studies complex critical points of a random polynomial with real coefficients and generalize
the result in Theorem 1 to the density of critical points of a SO(m + 1) polynomial.

1.2 Behavior of the Scaled Zero Density near R
m

Consider hm,N(z) as above. Note that the behavior of the density function in the m = 1 case
(Fig. 1) and the m = 2 case (Fig. 2) differ greatly. Consider the scaling limit of the density,

K∞
γreal

(z) = lim
N→∞

1

N
Eγreal(ZhN ( z√

N
)),

which will help us understand the behavior of the density function in a region around R
m

that is shrinking at a rate of 1√
N

. We can show that K∞
γreal

(z) depends only on y = Im z, so
we can write the scaled density as K∞

γreal
(y).

Figures 3 and 4 illustrate the behavior of K∞
γreal

(y) near R
m for m = 1 and m = 2. Note

that for m = 2,K∞
γreal

(y) does not tend linearly towards zero as in the m = 1 case, but instead
it tends to infinity. We prove the following:

Theorem 2 For y near 0,

K∞
γreal

(y) = O(|y|), m = 1,

K∞
γreal

(y) = O

(
1

‖y‖m

)
, m ≥ 2.

We will see that difference in the m = 1 and m ≥ 2 cases boils down to the fact that

∂2

∂y2
|y| = 0, for y ∈ R\{0},

∂2

∂yjyk

‖y‖ = O

(
1

‖y‖
)

, for y ∈ R
m\{0}, m ≥ 2.

Finally, after working mostly on C\R and C
m\R

m, we give a weak limit for Eγreal(ZfN
(z))

in the m = 1 case.
We show that

1

N
Eγreal(ZfN

(z)) = 1

N
Eγcx (ZfN

(z)) + O(N−1),

weakly on K ⊂ C. We stress that K could contain some points in R, whereas our strong
convergence result excludes points in R.
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2 Proof of Theorem 1 for m = 1

Consider the real random polynomial

fN(z) =
N∑

�=0

ã�z
�,

where the ã�’s are real independent Gaussian random variable with mean 0 and variance(
N

�

)
. Alternatively, one often writes

fN(z) =
N∑

�=0

a�

(
N

�

)1/2

z�,

where a� is a standard real Gaussian random variable. Instead, we choose to think of the
random polynomial

fN(z) =
N∑

�=0

c�

(
N

�

)1/2

z�,

where c� is a more general complex random variable with associated measure dγ . We then
consider two special cases

dγcx = 1

πN
e−|c|2dc, c ∈ C

N+1,

dγreal = δS

1

πN
e−|c|2dc, c ∈ C

N+1,

where δS is the delta function on S ⊂ C
N+1, the set of points c = a + ib ∈ C

N+1 where
b = 0 ∈ R

N+1. Here dγcx corresponds to the standard complex Gaussian coefficients case,
where we are considering

fN(z) =
N∑

�=0

c�

(
N

�

)1/2

z�,

where the c�’s are standard complex Gaussian random variables, and dγreal corresponds to
the standard real Gaussian coefficients case, where we have

fN(z) =
N∑

�=0

c�

(
N

�

)1/2

z� =
N∑

�=0

a�

(
N

�

)1/2

z�,

where c� = a� + i0 is a standard real Gaussian random variable. We let Eγ (·) denote expec-
tation with respect to dγ.

The goal of this section is to prove Theorem 1 in the m = 1 case:

Proposition 2.1 (Theorem 1 for m = 1) We can write

Eγreal(ZfN
(z)) = Eγcx (Zf

N
(z)) + ẼN(z),
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where

Eγcx (Zf
N
(z)) = N

π

1

(1 + |z|2)2

and where ẼN(z) = O(e−λzN ), for all z ∈ C\R. Here λz = −log
∣∣ 1+z2

1+|z|2
∣∣ is a positive con-

stant that depends continuously on z.

Using the Poincaré-Lelong formula, we write

Eγreal(ZfN
(z)) = Eγcx (Zf

N
(z)) + ẼN(z),

and we then aim to find an explicit formula for this error term. Writing fN(z) = a · FN(z)

and uN(z) = FN (z)

‖FN (z)‖ , we can write

ẼN(z) dx ∧ dy = Eγreal

(
i

π
∂∂̄ log |a · uN(z)|

)
.

Note that Eγreal(·) denotes an integral over all of R
N with respect to dγreal and is fairly

complicated integral. However, also note that dγreal, the real standard Gaussian measure, is
rotationally invariant. We use this fact and perform 2 real orthogonal changes of variables in
order to simplify this integral over R

N and write it as an integral over R
2:

Lemma 2.2 (Performing real rotations)

ẼN(z) dx ∧ dy = i

π
∂∂̄

∫

R2
log |a0(r + is) + a1(it)| 1

2π
e−(a2

0+a2
1 )/2 da0da1

for some functions r = rN(z), s = sN(z), and t = tN (z) for which we give formulas within
the proof of the lemma.

We make another change of variables, this time switching (a0, a1) to polar coordinates
(ρ, θ). We can easily integrate with respect to ρ, further simplifying our error term to an
integral with respect to θ over [0,2π ]. We apply Jensen’s formula to what is left to evaluate
the integral and get an explicit formula for ẼN(z):

Lemma 2.3 (Evaluating the integral) If r2 + s2 + t2 = 1 and r, s, t > 0, we have

1

2π

∫

R2
log |a0(r + is) + a1(it)|e−(a2

0+a2
1 )/2 da0da1 = 1

2
log(1 + 2rt).

Lemma 2.4 (An exact formula for, and asymptotics for, the error term) We show that, by
Lemma 2.2 and Lemma 2.3, and after some simplification of 2rt , we have

ẼN(z) = 1

π

∂2

∂z∂z̄
log

(
1 +

√

1 −
∣∣∣∣

(1 + z2)N

(1 + |z|2)N

∣∣∣∣
2 )

,

for z ∈ C\R. It follows that ẼN(z) = O(e−λzN ), z ∈ C\R, where λz = −log
∣∣ 1+z2

1+|z|2
∣∣ is a

positive constant depending continuously on z.
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This result gives us Theorem 1 for the one variable case.
In Sects. 2.1–2.5, we prove the aforementioned results. The approach we use is similar

to that described in [1], where they find the limit of the pair correlations of zeros of random
holomorphic sections of powers of a line bundle of a complex manifold. While we only deal
with density of zeros in this section, the condition that the coefficients aj are real causes the
method in [1] to be useful.

2.1 Proof of Proposition 2.1—Theorem 1 for m = 1

We write a = (a0, . . . , aN) and

FN =
((

N

0

)1/2

z0,

(
N

1

)1/2

z1, . . . ,

(
N

N

)1/2

zN

)
,

so that fN = a · FN . By the Poincare-Lelong formula, the density of the zeros of
f,Eγreal(ZfN

), satisfies

Eγreal(ZfN
) dx ∧ dy = Eγreal

(
i

π
∂∂̄ log |fN |

)

= Eγreal

(
i

π
∂∂̄ log |a · FN |

)
. (1)

We write FN(z) = ‖FN(z)‖uN(z), where uN(z) is a unit vector, and (1) becomes

Eγreal

(
i

π
∂∂̄ log‖FN(z)‖

)
+ Eγreal

(
i

π
∂∂̄ log |a · uN(z)|

)
.

From [1] we can see that

Eγcx (ZfN
(z)) dx ∧ dy = i

π
∂∂̄ log‖FN(z)‖

= Eγreal

(
i

π
∂∂̄ log‖FN(z)‖

)

so we have

Eγreal(Zf ) = Eγcx (Zf ) + ẼN(z). (2)

We now prove the Lemmas, which deal with the error term ẼN(z), and return to the proof
of Proposition 2.1 in Sect. 2.5.

2.2 Proof of Lemma 2.2—Real Rotations

As shown in [1], when aj is a standard complex Gaussian random variable, this error term
ẼN(z) is zero for all N (not just as N → ∞). Because of the SU(2)-invariance of the stan-
dard complex Gaussian measure, one can perform a unitary change of variables so that u
becomes (1,0, . . . ,0) and the integral

∫
CN+1 ∂∂̄ log |a · u|dγcx(a) becomes a single integral

that evaluates to 0:
∫

CN+1
∂∂̄ log |a · (1,0, . . . ,0)|dγcx(a) =

∫

C

∂∂̄ log |a0|dγcx(a0) = 0.
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In the case where aj is real, the second term is not zero for all N. Because only real
rotations can be performed, u can not be rotated to (1,0, . . . ,0), giving a single integral.
But we can still use the rotational invariance of real Gaussian measures to obtain a double
integral over R

2, which is a little more manageable than the integral over R
N+1.

Let u = Re u + iIm u. Note that u,Re u, and Im u depend on z and N but we frequently
omit these arguments for convenience. We can write u as

u = (Reu1, . . . ,ReuN) + i(Imu1, . . . , ImuN).

Since we need to do real rotations, the real and imaginary parts of u must be rotated the
same. Therefore, as mentioned, we can not rotate u to (1, 0, . . . , 0). However, we can rotate
so that either the real part or the imaginary part of u is of the form (r,0, . . . ,0), where
r = rN(z) is some (non-zero) constant less than 1. So we choose to perform a (real) rotation
of a0, a1, . . . , aN so that

ũ = Re ũ + iIm ũ = (r,0, . . . ,0) + i(Im ũ1, . . . , Im ũN ).

Then one can perform a rotation of the a1, . . . , aN variables so that Re ũ is unaffected and ũ
becomes

(rN(z),0, . . . ,0) + i(sN(z), tN (z),0, . . . ,0) = (rN(z) + isN(z), itN (z),0, . . . ,0).

Note that since u is a unit vector, and rotations preserve length, r, s, and t have the condition
r2 + s2 + t2 = 1. Note also that r, s, and t all depend on z and N but we frequently omit
these. We are now concerned with the limit of the simpler integral,

ẼN(z) = i

π

∫

RN+1
∂∂̄ log |(a0, . . . , aN) · (r + is, it,0, . . . ,0)|dγreal(a)

= i

π

∫

R2
∂∂̄ log |a0(r + is) + a1(it)|dμ(a0)dμ(a1)

= i

π
∂∂̄

∫

R2
log |a0(r + is) + a1(it)| 1

2π
e−(a2

0+a2
1 )/2 da0da1.

2.2.1 Formula for r

First, we know that since u(z) = F(z)

‖F(z)‖ , and since the length of Re u doesn’t change from a
rotation, we can write

r2 = ‖Re ũ‖2 = ‖Re u‖2 = ‖Re F‖2

‖F‖2

= 1

2
+ 1

2
Re

(
1 + z2

1 + |z|2
)N

= 1

2
+ O(e−λzN ),

where e−λz = ∣∣ 1+z2

1+|z|2
∣∣ < 1, z ∈ C\R, Note that we are assuming Im z �= 0, and note that

λz = −log
∣∣ 1+z2

1+|z|2
∣∣ > 1.
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2.2.2 Formula for s

Next, we have the relationship Re ũ · Im ũ = rs, so since the angle between Re u and Im u
doesn’t change under a rotation, we have

s = Re ũ · Im ũ
r

= Re u · Im u
r

= 1

2
Im

(
1 + z2

1 + |z|2
)N

· 1

r
= O(e−λzN ), z ∈ C\R.

2.2.3 Formula for t

Since r2 + s2 + t2 = 1, we have t easily:

[tN (z)]2 = 1 − [rN(z)]2 − [sN(z)]2

= 1

2
+ O(e−λzN ), z ∈ C\R.

Also, we note that r, s, and t converge uniformly on compact sets K ⊂ C\R, where the
error term is O(e−λKN), for some universal constant λ (independent of N and z). Finally, we
note that all derivatives of r, s, and t are O(e−λzN ), and all derivatives converge uniformly
on compact sets K ⊂ C\R as well.

2.3 Proof of Lemma 2.3—Evaluating the Integral

We now prepare to use Jensen’s formula to evaluate the integral

i

π
∂∂̄

∫

R2
log |a0(r + is) + a1(it)| 1

2π
e−(a2

0+a2
1 )/2 da0da1.

2.3.1 Switch to Polar Coordinates

First, we switch to polar coordinates, so the integral becomes

i

2π2
∂∂̄

∫ 2π

θ=0

∫ ∞

ρ=0
log |(ρ sin θ)(r + is) + (ρ cos θ)(it)|e−ρ2/2ρdρdθ.

We may factor out a ρ from the argument of the log and get for the integrand

(logρ + log |(sin θ)(r + is) + (cos θ)(it)|) e−ρ2/2.

Since
∫ 2π

θ=0

∫ ∞

ρ=0
logρe−ρ2

ρdρdθ

doesn’t depend on z, it gets killed by ∂∂̄, so the integral reduces to

∫ 2π

θ=0

∫ ∞

ρ=0
log |(sin θ)(r + is) + (cos θ)(it)|e−ρ2/2ρdρdθ.



818 B. Macdonald

The log term doesn’t depend on ρ, so we may pull that term outside the integral, and inte-
grate with respect to ρ to get

∫ 2π

θ=0
log |(sin θ)(r + is) + (cos θ)(it)|

[∫ ∞

ρ=0
e−ρ2/2ρ dρ

]
dθ

=
∫ 2π

θ=0
log |(sin θ)(r + is) + (cos θ)(it)|[−e−ρ2/2

]∞
0

dθ

=
∫ 2π

θ=0
log |(sin θ)(r + is) + (cos θ)(it)|dθ.

2.3.2 Jensen’s Formula

Using the fact that cos θ = 1
2 (eiθ + e−iθ ) and sin θ = 1

2i
(eiθ − e−iθ ), we can write the integral

as

−
∫ 2π

θ=0
log

1

2
|(eiθ − e−iθ )(−i)(r + is) + (eiθ + e−iθ )it |dθ.

We can bring out a log 1
2 , and since ∂∂̄ log 1

2 = 0, we have

−
∫ 2π

θ=0
log |(eiθ − e−iθ )(−ir + s) + (eiθ + e−iθ )it |dθ.

We can factor out e−iθ , and since log |e−iθ | = 0, we get

−
∫ 2π

θ=0
log |(ei2θ − 1)(−ir + s) + (ei2θ + 1)it |dθ

= −
∫ 2π

θ=0
log |(s + i(t − r))ei2θ + (−s + i(t + r))|dθ.

We can now use Jensen’s formula to evaluate the inner integral. Recall that Jensen’s formula
states that, assuming φ(0) �= 0, and φ is non-zero on ∂D(0,1), then

1

2π

∫ 2π

θ=0
log |φ(eiθ )|dθ = log |φ(0)| +

∑

φ(wj )=0
|wj |<1

log
1

|wj | .

In our case,

φ(w) = (s + i(t − r))w2 + (−s + i(t + r)),

so that we have

φ(eiθ ) = (s + i(t − r))ei2θ + (−s + i(t + r))

φ(0) = −s + i(t + r), and

φ(wj ) = 0 ⇐⇒ [wj(z)]2 = −−s + i(t + r)

s + i(t − r)
.

Note that since |φ(0)|2 = |−s + i(t + r)|2 = s2 + (t + r)2 = s2 + r2 + 2rt + t2 = 1 + 2rt ,
and r and t are non-negative (by construction), φ(0) �= 0.
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We show that |wj(z)|2 ≥ 1, for all z, implying that |wj(z)| ≥ 1 and that all the zeros
wj(z) of φ are outside the unit disk for every z. We have

|wj(z)|4 =
∣∣∣∣
−s + i(t + r)

s + i(t − r)

∣∣∣∣
2

= s2 + t2 + 2rt + r2

s2 + t2 − 2rt + r2
≥ 1

for z ∈ C since r and t are non-negative by construction. Note that the only time rt is zero
is when z ∈ R. In this case, rN(z) = 1 and sN(z) = tN (z) = 0 for all N, and |wj(z)| = 1.

So since all of the zeros of φ are outside the unit disk, we have for z ∈ C,

1

2π

∫ 2π

θ=0
log |φ(eiθ )|dθ = log |φ(0)| = log | − s + i(t + r)|

= 1

2
log | − s + i(t + r)|2

= 1

2
log(1 + 2rt),

or
∫

log |a0(r + is) + a1(it)|e−a2
0−a2

1 da0da1 = π
1

2
log(1 + 2rt),

the result of the lemma.

2.4 Proof of Lemma 2.4—An Exact Formula for the Error Term

From the proof of Lemma 2.3, we have

ẼN(z) dx ∧ dy = − i

2π
∂∂̄ log(1 + 2rt)

= 1

π

∂2

∂z∂z̄
log(1 + 2rt) dx ∧ dy, z ∈ C\R.

After some simplification of 2rt we have

ẼN(z) = 1

π

∂2

∂z∂z̄
log

(
1 +

√

1 −
∣∣∣∣

(1 + z2)N

(1 + |z|2)N

∣∣∣∣
2)

,

for z ∈ C\R.

2.5 Finishing Proof of Proposition 2.1—Theorem 1 for m = 1

Since we found that r = rN(z) =
√

1
2 + O(e−λzN ), t = tN (z) =

√
1
2 + O(e−λzN ), and s =

sN(z) = O(e−λzN ) and all derivatives (in particular, the first and second derivatives) of r, s,

and t are O(e−λzN ), we can say that, from the proof of Lemma 2.4,

ẼN(z) = O(e−λzN ), z ∈ C\R.

The proof of Proposition 2.1 follows directly from this result, combined with (2) and
Lemma 2.4.
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3 Proof of Theorem 1 for m ≥ 2

In this section we are concerned with the zeros of hm,N = (f1,N , . . . , fm,N ) : C
m → C

m,
where fq,N is a polynomial of the form

fq,N (z) =
N∑

|J |=0

a
q

J

(
N

J

)1/2

zJ

where a
q

J is a real standard Gaussian random variable, and where we use the following
multi-index notation:

z = (z1, . . . , zm)

|J | = j1 + · · · + jm

aq

J = aq

j1···jm ∈ R

(
N

J

)
=

(
N

j1, . . . , jm

)
= N !

(N − j1 − · · · − jm)!j1n · · · jm!
zJ = z

j1
1 · · · zjm

m .

Instead, we choose to think of the random polynomials

fq,N (z) =
N∑

|J |=0

c
q

J

(
N

J

)1/2

zJ ,

where the c
q

J ’s are independent complex random variables, where the random vector {cq

J } ∈
DN,DN = (

N+m

m

)
has associated measure dγ for each q . We then consider two special cases

dγcx = 1

πN
e−|c|2dc, c ∈ C

DN , DN =
(

N + m

m

)

dγreal = δS

1

πN
e−|c|2dc, c ∈ C

DN ,

where δS is the delta function on S ⊂ C
DN , the set of points c = a + ib ∈ C

DN where
b = 0 ∈ R

DN . Here dγcx corresponds to the standard complex Gaussian coefficients case,
where we are considering

fq,N (z) =
N∑

|J |=0

c
q

J

(
N

J

)1/2

zJ ,

where the c
q

J ’s are standard complex Gaussian random variables, and dγreal corresponds to
the standard real Gaussian coefficients case, where we have

fq,N (z) =
N∑

|J |=0

c
q

J

(
N

J

)1/2

zJ =
N∑

|J |=0

aq

J

(
N

J

)1/2

zJ ,

where c
q

J = a
q

J + i0 is a standard real Gaussian random variable. We let E(·) denote expec-
tation with respect to dγreal and Eγcx (·) denote expectation with respect to dγcx .

The goal of this chapter is to prove Theorem 1 in the m ≥ 1 case.
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Theorem 1

Eγreal(Zhm,N (z)) = Eγcx (Zhm,N (z)) + O(e−λzN),

for all z ∈ C
m\R

m, where λz is a positive constant that depends continuously on z. The
explicit formula for λz is

λz = −log

∣∣∣∣
1 + z · z
1 + ‖z‖2

∣∣∣∣.

Also, for compact sets K ⊂ C
m\R

m, the density converges uniformly with an error term of
O(e−λKN), where λK is a constant that depends only on K .

So at any point away from R
m, the expected density of zeros in the real coefficients case

approaches the expected density of zeros in the complex coefficients case as N gets large.
Using the Poincaré-Lelong formula, we can write

Eγreal(Zh
N
(z)) = Eγcx (ZhN

(z)) + ẼN(z)

where

Eγcx (ZhN
(z)) = mNm

πm

1

(1 + ‖z‖2)m+1
,

and where ẼN(z) is some “error term”. We then find an explicit formula for this error term.
Writing fq,N (z) = a · Fq,N (z) and uq,N (z) = Fq,N (z)

‖Fq,N (z)‖ , we can write

ẼN(z)

as a sum of 2m − 1 terms, each of which contains a factor of the form

Eγreal

(
1

π

∂2

∂zj ∂z̄k

log |a · uN(z)|
)

. (3)

Note that Eγreal(·) denotes an integral over all of R
DN , with respect to dγreal, and is a fairly

complicated integral. However, like in the one variable case, we note that dγreal is rotation-
ally invariant, and we use this fact and perform 2 real orthogonal changes of variables in
order to simplify this integral over R

DN and write it as an integral over R
2:

Lemma 3.2 (Lemma 2.2 for m ≥ 1) The factor (3) equals

1

π

∫

R2
log |a0(r + is) + a1(it)| 1

2π
e−(a2

0+a2
1 )/2 da0da1

for some functions r = rN(z), s = sN(z), and t = tN (z) for which we give formulas within
the proof of the lemma.

Then we easily get

Lemma 3.3 (Lemma 2.3 for m ≥ 1) If r2 + s2 + t2 = 1 and r, s, t > 0, we have that

1

2π

∫

R2
log |a0(r + is) + a1(it)|e−(a2

0+a2
1 )/2 da0da1 = 1

2
log(1 + 2rt).
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This means that the factors (3) are of the form

1

π

∂2

∂zj ∂z̄k

log(1 + 2rt)

each of which is O(e−λzN) for some positive constant λz depending continuously on z. Using
an argument that relies on the independence of the fq,N (z)′s, we get the following:

Lemma 3.4 (Lemma 2.4 for m ≥ 1) We give an exact formula for ẼN(z), and show that it
goes to zero rapidly, i.e.,

ẼN(z) = O(e−λzN), z ∈ C
m\R

m,

where λz is a positive constant depending continuously on z. We give an explicit formula for
λz in the proof of the theorem.

This lemma gives us our first main theorem, as shown in Sect. 3.5.

3.1 Proof of Theorem 1

We begin by writing

aq = (a
q

0,...,0, . . . , a
q

J , . . . , a
q

0,...,0,N ) ∈ R
DN ,

Fq,N (z) = FN(z) =
((

N

0, . . . ,0

) 1
2

, . . . ,

(
N

J

) 1
2

zJ , . . . ,

(
N

0, . . . ,0,N

) 1
2

z0
1 · · · zN

m

)
.

Note that Fq,N (z) = FN(z) ∈ C
DN , where DN = (

N+m

m

)
, and that we can write fq,N = aq ·

Fq,N = aq · FN .

By the Poincaré-Lelong formula, we have

E(Zf1(z) ∧ · · · ∧ Zfm(z)) = E

(
i

2π
∂∂̄ log |f1|2 ∧ · · · ∧ i

2π
∂∂̄ log |fm|2

)

= E

[(
i

2π

)m(
∂∂̄ log |a1 · F|2 ∧ · · · ∧ ∂∂̄ log |am · F|2)

]

which we can write more succinctly as

(
i

2π

)m

E

(
m∧

q=1

∂∂̄ log
∣∣aq · F

∣∣2

)
. (4)

Writing F = F
‖F‖ ‖F‖ and u = F

‖F‖ , we can write (4) as

(
i

2π

)m

E

(
m∧

q=1

∂∂̄ log
∣∣aq · F

‖F‖‖F‖∣∣2

)

=
(

i

2π

)m

E

[
m∧

q=1

(
∂∂̄ log‖F‖2 + ∂∂̄ log |aq · u|2)

]
. (5)
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Since ∂∂̄ log‖F‖2 + ∂∂̄ log |aq · u|2 is independent of a� for l �= q, then we can write the
expected value of the wedge product as the wedge product of the expected values, and (5)
becomes

(
i

2π

)m m∧

q=1

E
[
∂∂̄ log‖F‖2 + ∂∂̄ log |aq · u|2]

=
(

i

2π

)m m∧

q=1

(
∂∂̄ log‖F‖2 + E[∂∂̄ log |aq · u|2]).

At this point, we could find the large N limit; we have essentially reduced the m-variables
case to showing that E[∂∂̄ log |aq ·u|2] is O(e−λzN). If this term is indeed O(e−λzN), then all
but one term in the wedge product goes to zero exponentially fast. Since we want an exact
formula for the density of zeros, we delay the proof of the large N limit, and we first work
out the details of writing an exact formula more explicitly. From that formula, the large N

limit and the scaling limit will follow easily.
We write

(
i

2π

)m

E

[
m∧

q=1

(
∂∂̄ log‖F‖2 + ∂∂̄ log |aq · u|2)

]

= [E1,N (z) + E2,N (z) + · · · + E2m,N (z)]dω

where E1,N (z)dω,E2,N (z)dω, . . . ,E2m,N (z)dω are given by ( i
2π

)m times the terms

E
(
∂∂̄ log‖F‖2 ∧ ∂∂̄ log‖F‖2 ∧ · · · ∧ ∂∂̄ log‖F‖2

)

E
(
∂∂̄ log |a1 · u| ∧ ∂∂̄ log‖F‖2 ∧ · · · ∧ ∂∂̄ log‖F‖2

)

...

E
(
∂∂̄ log |a1 · u| ∧ ∂∂̄ log |a2 · u| ∧ · · · ∧ ∂∂̄ log |am · u|

)
,

respectively. We look at these 2m terms and we claim that only the first term is non-zero in
the limit. The first term is known:

E1,N (z)dω = Eγcx (ZhN
)dω

=
(

i

2π

)m

E
(
∂∂̄ log‖F‖2 ∧ ∂∂̄ log‖F‖2 ∧ · · · ∧ ∂∂̄ log‖F‖2

)

= mNm

πm

1

(1 + |z1|2 + · · · + |zm|2)m+1
dω

= mNm

πm

1

(1 + ‖z‖2)m+1
dω.

We let the error term ẼN(z) be the sum of the remaining terms:

ẼN(z) = E2,N (z) + · · · + E2m,N (z).

We now prove the lemmas, and continue the proof of Theorem 1 in Sect. 3.5.
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3.2 Proof of Lemma 3.2

Consider the integral
∫

R
DN

log |a� · uN(z)|dμ(a�).

Note that the terms E2,N (z), . . . ,E2m,N (z) each contain a factor of this form. Also note that
this integral is in the same form as the error term in the one variable case (see Lemma 2.2),
so we proceed in a similar manner. We rotate (a0···0, . . . , a0···0N) and then (a10···0, . . . , a0···0N)

so that the integral becomes
∫

R
DN

log |a� · (r + is, it,0, . . . ,0)|dμ(a�)

=
∫

R2
log |a0···0(r + is) + a10···0it |dμ(a0···0) dμ(a10···0)

where r = rN(z), s = sN(z), and t = tN (z). We have similar formulae and large N limits for
r, s, and t :

[rN(z)]2 = 1

2
+ 1

2
Re

(
1 + z2

1 + · · · + z2
m

1 + |z1|2 + · · · + |zm|2
)N

= 1

2
+ O(e−λzN), z ∈ C

m\R
m,

sN(z) = 1

2
Im

(
1 + z2

1 + · · · + z2
m

1 + |z1|2 + · · · + |zm|2
)N 1

rN(z)

= O(e−λzN), z ∈ C
m\R

m,

[tN (z)]2 = 1 − [rN(z)]2 − [sN(z)]2

= 1

2
+ O(e−λzN), z ∈ C

m\R
m.

Also, all derivatives of r, s and t are O(e−λzN), for z ∈ C
m\R

m. Finally, we note that, r, s, t

and their derivatives converge uniformly on compact sets K ⊂ C
m\R

m, where the error term
is O(e−λKN) for some universal constant λ (independent of N and z).

3.3 Proof of Lemma 3.3

The integral is in the same form as the one variable case in Lemma 2.3, the only differences
being different names for the coefficients, and the formulas for r and t . So by Lemma 2.3,
we have

1

2π

∫

R2
log |a0···0(r + is) + a10···0it |dμ(a0···0) dμ(a10···0) = 1

2
log(1 + 2rt).

3.4 Proof of Lemma 3.4

Consider, Eq the q-th term in ẼN(z). This term is of the form

Eq,N(z)dω = E(∂∂̄φ
q

1,N ∧ · · · ∧ ∂∂̄φ
q

m,N )
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where φ
q

l,N (z) is either log‖FN(z)‖ or log |a� · uN(z)| for each �. For example, for E2,N (z)
we have φ2

1,N = log |a1 · u| and φ2
�,N = log‖FN(z)‖ for 1 < � ≤ k. Writing out the wedge

product we get

Eq,N(z) = E

[∑

σ,τ

(−1)σ+τ

(
∂2

∂zσ(1)∂z̄τ(1)

φ
q

1,N

)
× · · · ×

(
∂2

∂zσ(m)∂z̄τ(m)

φ
q

m,N

)]

where the sum is over all permutations σ and τ of {1,2, . . . ,m}, and where (−1)σ denotes
the sign associated to the permutation σ. Since the sum is finite, we can write

Eq,N(z) =
∑

σ,τ

(−1)σ+τE

[(
∂2

∂zσ(1)∂z̄τ(1)

φ
q

1,N

)
× · · · ×

(
∂2

∂zσ(m)∂z̄τ(m)

φ
q

m,N

)]

or

Eq,N(z) =
∑

σ,τ

(−1)σ+τE
σ,τ
q,N (z)

where

E
σ,τ
q,N (z) := E

[
m∏

�=1

(
∂2

∂zσ(�)∂z̄τ(�)

φ
q

�,N (z)
)]

.

To simplify notation even more, let

D
σ,τ
� = ∂2

∂zσ(�)∂z̄τ(�)

so that we have

E
σ,τ
q,N (z) = E

[
m∏

�=1

D
σ,τ
� φ

q

�,N (z)

]
.

Now, note that φ
q

�,N (z) does not depend on all of a1, . . . , am, but only depends at most
on a�. (If φ

q

�,N (z) = log‖FN(z)‖, then it doesn’t depend on a� either.) So because φ
q

�,N (z)
is independent of a�′

for all �′ �= �, we will write this integral over R
DN × · · · × R

DN as a
product of integrals over R

DN . To do this, we first let

Lq = {� : φq

� is of the form log‖FN(z)‖} ⊂ {1, . . . ,m}.

Note that φ
q

� is of the form log |a� · uN(z)|, for all � /∈ Lq . We can now we split the product
to get

E
σ,τ
q,N (z) = E

[( ∏

�∈Lq

D
σ,τ
� φ

q

�,N (z)
)( ∏

�/∈Lq

D
σ,τ
� φ

q

�,N (z)
)]

= E

[( ∏

�∈Lq

D
σ,τ
� log‖FN(z)‖

)( ∏

�/∈Lq

D
σ,τ
� log |a� · uN(z)|

)]
.

By the definition of expected value, we have
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E
σ,τ
q,N (z) =

∫

R
DN

[( ∏

�∈Lq

D
σ,τ
� log‖FN(z)‖

)

×
( ∏

�/∈Lq

D
σ,τ
� log |a� · uN(z)|

)]
dμ(a1) · · ·dμ(am).

Note that the first product is independent of a� for all � /∈ Lq, and the second product is
independent of all � ∈ Lq, so we can write E

σ,τ
q,N (z) as

[∫

R
|Lq |DN

∏

�∈Lq

D
σ,τ
� log‖FN(z)‖dμ(a�)

]

×
[∫

R
(m−|Lq |)DN

∏

�/∈Lq

D
σ,τ
� log |a� · uN(z)|dμ(a�)

]
.

The first product is also independent of a� for all � ∈ Lq, and since
∫

R
DN dμ(a�) = 1, we

have for the first integral

∏

�∈Lq

D
σ,τ
� log‖FN(z)‖.

Even more, the �-th factor in the second product depends only on � and is therefore inde-
pendent of all �′ /∈ L not equal to �. So the integral of this product becomes a product of the
integrals:

∏

�/∈Lq

∫

R
DN

D
σ,τ
� log |a� · uN(z)|dμ(a�)

and we can switch the derivatives and the integral to get

∏

�/∈Lq

D
σ,τ
�

∫

R
DN

log |a� · uN(z)|dμ(a�).

Putting everything together we have

E
σ,τ
q,N (z) =

[ ∏

�∈Lq

D
σ,τ
� log‖FN(z)‖

][ ∏

�/∈Lq

D
σ,τ
�

∫

R
DN

log |a� · uN(z)|dμ(a�)

]
.

Lemma 3.3 gives us

E
σ,τ
q,N (z) =

[ ∏

�∈Lq

D
σ,τ
� log‖FN(z)‖

][ ∏

�/∈Lq

D
σ,τ
�

1

2
log(1 + 2rt)

]
.

3.4.1 Exact Formula

Further simplification gives
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E
σ,τ
q,N (z) =

[ ∏

�∈Lq

D
σ,τ
�

1

2
log(1 + ‖z‖2)N

]

×
[ ∏

�/∈Lq

D
σ,τ
�

1

2
log

(
1 +

√

1 −
∣∣∣∣
(1 + z · z)N

(1 + ‖z‖2)N

∣∣∣∣
2)]

.

Finally,

Eq,N(z) =
∑

σ,τ

(−1)σ+τE
σ,τ
q,N (z)

and

ẼN(z) =
2m∑

q=2

Eq,N(z).

3.4.2 Limit Formula

All derivatives of log‖F‖ are bounded. Next, r = rN(z) =
√

1
2 + O(e−λzN), t = tN (z) =

√
1
2 + O(e−λzN), and s = sN(z) = O(e−λzN) and all derivatives (in particular, the first and

second derivatives) of r, s, and t are O(e−λzN) on C
m\R

m. So we can say that all second
derivatives of log(1 + 2rt) are O(e−λzN) on C

m\R
m. This means that

E
σ,τ
q,N (z) = O(e−λzN), z ∈ C

m\R
m.

Since this is true for each i, σ, and τ, we have

ẼN(z) =
2m∑

q=2

∑

σ,τ

(−1)σ+τE
σ,τ
q,N (z) = O(e−λzN),

for z ∈ C
m\R

m.

3.5 Finishing Proof of Theorem 1

Using our work in Sect. 3.1 with Lemma 3.4, we get our main result:

Eγreal(ZhN (z)) = Eγcx (ZhN (z)) + ẼN(z)

= mNm

πm

1

(1 + ‖z‖2)m+1
+ O(e−λzN), z ∈ C

m\R
m.

4 Proof of Theorem 2

We then wish to study the behavior of Eγreal(ZfN
(z)) near the real line. We define the scaling

limit of the density Eγ(ZfN
(z)) to be

K∞
γ (z) = lim

N→∞
1

N
Eγ(Zf ( z√

N
))
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The scaling limit helps us understand the behavior of the density function in a region around
R that is shrinking at a rate of 1√

N
. We note that

K∞
γcx

(z) = 1

π
,

and we find the scaling limit of the error term when m = 1:

Lemma 4.1 (Scaling limit for the error term, m = 1)

Ẽ∞(z) = lim
N→∞

1

N
ẼN

(
z√
N

)

= 1

π

∂2

∂z∂z̄
log

(
1 +

√

1 −
∣∣∣∣
ez2

e|z|2

∣∣∣∣
2)

, z ∈ C\R.

By setting z = x + iy, we can write

Ẽ∞(z) = 1

4π

∂2

∂y2
log(1 +

√
1 − e−4y2

), y �= 0.

Then, by Proposition 2.1 and Lemma 4.1, we recover Prosen’s scaled density equation,
and our Theorem 2 for the special case m = 1:

Proposition 4.2 (Equation (26) in [11], and Theorem 2 for m = 1) We have

K∞
γreal

(z) = 1

π

1 − (4y2 + 1)e−4y2

(1 − e−4y2
)3/2

.

Since K∞
γreal

(z) depends only on y, we can write K∞
γreal

(y), and we have the asymptotics

K∞
γreal

(y) = O(|y|)

for y near zero.

Since y = 0 corresponds to the real line, this result tells us that the scaled density tends
linearly toward 0 as we approach the real line. This formula for K∞

γreal
(z) was given by Prosen

as mentioned, but we find it here using Poincaré-Lelong method that will be generalized for
the m ≥ 2 case. We give a formula for the scaling limit of the “error term” ẼN(z), when
z ∈ C

m\R
m, which we denote Ẽ∞(z), z ∈ C

m\R
m, and the scaling limit of the density, which

we denote, K∞
γreal

(y). (Once again, the scaled density only depends on y = Im z.) We show
that the behavior of K∞

γreal
(y) near R

m for m ≥ 2 is different than the behavior for m = 1:

Theorem 2 For y near 0,

K∞
γreal

(y) = O(|y|), m = 1,

K∞
γreal

(y) = O

(
1

‖y‖m

)
, m ≥ 2.
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We also show that as |Im z| → ∞, Ẽ∞(z) → 0, so that K∞
γreal

(y) → 0, as ‖y‖ → ∞. In
other words, the scaled density of zeros in the real coefficients case approaches the scaled
density of zeros in the complex coefficients case as you move far away from R

m.

Finally, after working mostly on C\R and C
m\R

m, we give a weak limit of the error term
ẼN(z) on compact sets K ⊂ C (which may include points in R):

Proposition 4.3 (A weak limit, m = 1)

1

N
ẼN(z) dx ∧ dy = O(N−1),

weakly on compact sets K ⊂ C, by which we mean that for any φ ∈ C∞(K),

1

N
(ẼN(z) dx ∧ dy,φ(z)) = 1

N

∫

K

ẼN(z)φ(z) dx ∧ dy = O(N−1).

This means that

1

N
Eγreal(ZfN

(z)) = 1

N
Eγcx (ZfN

(z)) + O(N−1)

= 1

π(1 + |z|2)2
+ O(N−1), weakly on K ⊂ C.

Note that K could contain some points in R, whereas the strong convergence result excludes
points in R.

4.1 Proof of Lemma 4.1—Scaling Limit of the Error Term

By the chain rule we have for any differentiable function f (z)

∂2

∂z∂z̄
f (z)

∣∣
z√
N

= N
∂2

∂z∂z̄

[
f

(
z√
N

)]
.

So we have from Lemma 2.3

1

N
ẼN

(
z√
N

)
= 1

Nπ

∂2

∂z∂z̄
log [1 + 2rN(z)tN (z)]

∣∣
z√
N

= 1

π

∂2

∂z∂z̄
log

[
1 + 2rN

(
z√
N

)
tN

(
z√
N

)]
, z ∈ C\R,

and after some simplification we get

1

π

∂2

∂z∂z̄
log

(
1 +

√√√√1 −
∣∣∣∣
(1 + ( z√

N
)2)N

(1 + | z√
N

|2)N

∣∣∣∣
2)

, z ∈ C\R.

We now take the limit and get

lim
N→∞

1

N
ẼN

(
z√
N

)
= 1

π

∂2

∂z∂z̄
log

(
1 +

√

1 −
∣∣∣∣
ez2

e|z|2

∣∣∣∣
2)

,
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for z ∈ C\R. Setting z = x + iy, we can write

1

4π

∂2

∂y2
log(1 +

√
1 − e−4y2

), y �= 0,

and after simplification and adding to K∞
γcx

(z) = 1
π
, we recover Prosen’s result in [11]:

K∞
γreal

(z) = 1

π

1 − (4y2 + 1)e−4y2

(1 − e−4y2
)3/2

, y �= 0.

4.2 Proof of Proposition 4.2—Theorem 2 for m = 1

Using Lemma 4.1 we have the asymptotics

K∞
γreal

(y) = O(|y|)
for y near zero.

4.3 Proof of Theorem 2

From the proof of Lemma 3.4 we have

Eσ,τ
q,∞(z) := lim

N→∞
1

Nk
E

σ,τ
q,N

(
z√
N

)

=
[ ∏

�∈Lq

D
σ,τ
� ‖z‖2

][ ∏

�/∈Lq

D
σ,τ
�

1

2
log

(
1 +

√

1 −
∣∣∣∣

ez·z

e‖z‖2

∣∣∣∣
2)]

. (6)

If we write z = x + iy, then z · z = ‖x‖2 + 2i(x · y)+‖y‖2. Since |e2i(x·y)| = 1, we can write
the second product as

∏

�/∈Lq

D
σ,τ
�

1

2
log(1 +

√
1 − e−4‖y‖2

).

Since the first product is bounded (it is 1 if σ(�) = τ(�), for all � ∈ L, and zero otherwise),
and the second product goes to zero exponentially fast as ‖y‖ → ∞, we have

Eσ,τ
q,∞(z) → 0, as ‖y‖ → ∞.

Since this is true for each i, σ, and τ we have

Ẽ∞(z) =
2m∑

q=2

∑

σ,τ

(−1)σ+τEσ,τ
q,∞(z) → 0, as ‖y‖ → ∞

and since

K∞
γreal

(z) = lim
N→∞

1

N
Eγreal(ZhN ( z√

N
))

= lim
N→∞

1

N

(
E1,N

(
z√
N

)
+ ẼN

(
z√
N

))
,
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we get

K∞
γreal

(z) → m

πm
, as ‖y‖ → ∞.

We now look at the behavior of the second term in (6) near R
m. We have the following

asymptotics:

1

2
log(1 +

√
1 − exp−4‖y‖2

) = ‖y‖ + O(‖y‖2),

∂2

∂yj ∂yk

1

2
log(1 +

√
1 − exp−4‖y‖2

) = ∂2

∂yj ∂yk

‖y‖ + O(1) = O

(
1

‖y‖
)

.

Since in the worst case the second term has m products, we have at worst

∏

�/∈Lq

D
σ,τ
�

1

2
log(1 +

√
1 − e−4‖y‖2

) = O

(
1

‖y‖m

)
,

giving us

Eσ,τ
q,∞(z) = O

(
1

‖y‖m

)
, and Ẽ∞(z) =

2m∑

q=2

∑

σ,τ

(−1)σ+τEσ,τ
q,∞(z) = O

(
1

‖y‖m

)
.

4.4 Proof of Proposition 4.3—Weak Limit

Let K ⊂ C be a compact set. Note that unlike before, we are including points on the real
line. We now show that 1

N
ẼN(z) dx ∧dy goes to 0 weakly on K. More specifically, we show

that for any φ ∈ C∞(K),

1

N
(ẼN(z) dx ∧ dy,φ(z)) = 1

N

∫

K

ẼN(z)φ(z) dx ∧ dy = O(N−1).

Recall that ẼN(z) dx ∧ dy = E( i
π
∂∂̄ log |a · uN(z)|). By the definition of the expectation of

a distribution, we have

(ẼN(z) dx ∧ dy,φ(z)) =
(

E

(
i

π
∂∂̄ log |a · uN(z)|

)
, φ(z)

)

= E

(
i

π
∂∂̄ log |a · uN(z)|, φ(z)

)
.

By the definition of the derivative of a distribution, we have

E

(
i

π
∂∂̄ log |a · uN(z)|, φ(z)

)
= E

(
log |a · uN(z)|, i

π
∂∂̄φ(z)

)
,

and by the definition of a distribution, we can write this as

E

(∫

K

log |a · uN(z)| i

π
∂∂̄φ(z)

)
.
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Recall that E denotes expectation with respect to the Gaussian measure dγreal. We then have
by definition of expected value that this equals

∫

RN

(∫

K

log |a · uN(z)| i

π
∂∂̄φ(z)

)
dγreal(a).

Since the integrand is bounded, and since φ(z) does not depend on a, we can switch the
order of the integrals and get

∫

K

(∫

RN

log |a · uN(z)|dγreal(a)

)
i

π
∂∂̄φ(z).

Recall that by Lemma 2.3 above we have that the inner integral is 1
2 log(1 + 2rt), so we

have
∫

K

(∫

RN

log |a · uN(z)|dγreal(a)

)
i

π
∂∂̄φ(z) =

∫

K

i

2π
log(1 + 2rt)∂∂̄φ(z).

Recall also that rN(z) and tN (z) are both positive by construction, and both are bounded
by 1 since r2 + s2 + t2 = 1. Both of these conditions are true even on the real line, where
rN = 0 and tN = 0 for all N. This implies the crude estimate 1 ≤ (1 + 2rt) ≤ 3, everywhere
on C and, in particular, on K.

Since φ ∈ C∞(K), we can write

∫

K

i

2π
log(1 + 2rt)∂∂̄φ(z) ≤

∫

K

C
i

π
∂∂̄φ(z),= C

∥∥∥∥
i

π
∂∂̄φ(z)

∥∥∥∥
L1(K)

where C is independent of N,K, and z, including z on the real line, and the L1 norm
‖ i

π
∂∂̄φ(z)‖L1(K) depends only on K. So then we have that

(ẼN(z) dx ∧ dy,φ(z)) ≤ CK

where CK is a constant which depends only on K. We now have want we want:

1

N
(ẼN(z) dx ∧ dy,φ(z)) ≤ 1

N
CK = O(N−1).

Note that when we consider compact sets K that include part of the real line, the weak
limit is the only result we have. We do not get a strong result because the derivatives of
r, s, t, and therefore ẼN(z) blow up near the real line. When we find the weak limit and
move the ∂∂̄ from the log term to the φ term as we did above, we avoid this problem:
only the derivatives of r and t blow up near the real line, not the values of the functions
themselves.
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